Re-using biological devices: a model-aided analysis of interconnected transcriptional cascades designed from the bottom-up

نویسندگان

  • Lorenzo Pasotti
  • Massimo Bellato
  • Michela Casanova
  • Susanna Zucca
  • Maria Gabriella Cusella De Angelis
  • Paolo Magni
چکیده

Background The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden. Methods Here, we analyzed a set of synthetic transcriptional cascades in Escherichia coli. We aimed to test the predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model, BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn individual component functions and test the predicted output of interconnected circuits, respectively. Results Among the constructed configurations, two test set circuits showed unexpected logic behaviour. Both NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two circuits showing unexpected behaviour. Conclusions Superior descriptive and predictive capabilities were achieved considering resource limitation modelling, but further efforts are needed to improve the accuracy of models for biological engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی مقایسه‌ای تطابق لبه‌ای فریم‌ورک‌های تمام سرامیکی با بیس زیرکونیا (Cercon) ساخته شده به دو روش مختلف Direct scanning) و (Wax-up

Background and Aims: Since a large marginal opening allows more plaque accumulation, gingival sulcular fluid flow and bone loss, microleakage, recurrent caries and periodontal disease, marginal fit is of great importance in fixed restorations. The aim of this study was to compare the marginal fit of zirconium-based all ceramic (Cercon) frameworks, made by two different approaches (Direct and Wa...

متن کامل

Bottom-Up Engineering of Biological Systems through Standard Bricks: A Modularity Study on Basic Parts and Devices

BACKGROUND Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitat...

متن کامل

Rational design of modular circuits for gene transcription: A test of the bottom-up approach

BACKGROUND Most of synthetic circuits developed so far have been designed by an ad hoc approach, using a small number of components (i.e. LacI, TetR) and a trial and error strategy. We are at the point where an increasing number of modular, inter-changeable and well-characterized components is needed to expand the construction of synthetic devices and to allow a rational approach to the design....

متن کامل

Design, Modeling and Computational Analysis of crRNA to Regulate MetastamiR-10b and MetastamiR-126 in Post-transcriptional Level by CRISPR-C2c2 (Cas13a) Technique

Introduction: Metastasis is one the most important causes of mortality in cancer patients. Recent studies have shown the metastatic potential of a specific group of microRNAs called metastamirs.  miR-126 is shown to be correlated with the colorectal liver metastasis. Also, overexpression of miR-10b has been reported in metastatic breast cancer.  Therefore, down regulation of these miRNAs at tra...

متن کامل

Design, Modeling and Computational Analysis of crRNA to Regulate MetastamiR-10b and MetastamiR-126 in Post-transcriptional Level by CRISPR-C2c2 (Cas13a) Technique

Introduction: Metastasis is one the most important causes of mortality in cancer patients. Recent studies have shown the metastatic potential of a specific group of microRNAs called metastamirs.  miR-126 is shown to be correlated with the colorectal liver metastasis. Also, overexpression of miR-10b has been reported in metastatic breast cancer.  Therefore, down regulation of these miRNAs at tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017